Contribution from the Inorganic Chemistry Laboratory, University of Athens, Navarinou 13A, Athens, Greece, and the Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3V1, Canada

Complexes of Inosine, Cytidine, and Guanosine with Palladium(I1)

G. PNEUMATIKAKIS, N. HADJILIADIS, and T. THEOPHANIDES*

Received February *25'.* 1977

The reactions of Pd(I1) with inosine (InoH) and guanosine (GuoH) have been studied in aqueous solutions. The complexes isolated from these reactions have the following formulas: *cis-* and trans-[Pd(NuclH)₂Cl₂], *cis-* and trans-[Pd(Nucl)₂], cis - and $trans$ -[Pd(InoH)₂(NuclH)₂]Cl₂, cis - and $trans$ -[Pd(GuoH)₂(NuclH)₂]Cl₂, cis -[Pd(H₂O)₂(GuoH)₂]Cl₂, cis - $[Pd(GuoH)_2(Guo)]Cl$, cis- $[Pd(GuoH)_2(Ino)]Cl$, $[Pd(GuoH)_3Cl]Cl$, and $[Pd(GuoH)_2(InoH)Cl]Cl$, where NuclH = inosine and guanosine. The compounds have been identified by elemental analyses, conductivity measurements, and IR and 'H NMR spectra. In this case, i.e., with palladium, both cis and trans isomers have been isolated and characterized, in contrast to the platinum analogues. The diaquo cis-[Pd(H₂O)₂(GuoH)₂]Cl₂ complex and the trinucleosides, [Pd(GuoH)₃Cl]Cl and [Pd(GuoH)₂(InoH)Cl]Cl, are ionic and novel in this series of complexes. The trans effect of nucleosides follows the order Nucl $\lt C$ 1⁻, Br⁻. N₇O₆ chelation has been found here, comparable to that proposed for the analogous platinum complexes. This N₇O₆ chelation is discussed with relation to the mode of action and the antitumor activity of *cis*-[Pt(NH₃)₂Cl₂].

Introduction

The interaction of metals with purine and pyrimidine bases and their derivatives is of great biological importance. Both metal ions and certain nucleotides serve as cofactors for various enzymatic reactions.¹ Many investigations concerning these interactions have been carried out in recent years.^{2,}

The discovery of the antitumor activity of platinum inorganic salts by Rosenberg and his collaborators and the suggestion that platinum complexes attack DNA *in vivo4* prompted us to study the interaction of purine and pyrimidine bases with $Pt(II).5$ -7

The antitumor properties of metals are not limited to Pt(I1) complexes.⁸ Recently, Kirschner et al.⁹ reported some $Pt(II)$ and Pd(I1) complexes with sulfur and nitrogen ligands with potential antitumor activity. Therefore, the interaction of Pd(I1) with purine and pyrimidine bases is interesting. The interactions of Pd(I1) with certain purine and pyrimidine bases have been recently investigated in solution by ¹H and ¹³C NMR spectroscopy.^{10,11} The aquation of *cis*-[Pd(en)Cl₂] has also been reported.^{11b} In addition, the reactions of 6mercaptopurine with Pd(I1) and the stability constants of the complexes formed,12 together with the crystal structure of (dimethylacetamide)bis(**6-mecapto-9-benzy1purine)palladi**um(II), have been reported.¹³

The present work was undertaken in order to see if Pd(I1) reacts in a similar way to Pt(II) with inosine and guanosine^{7b,c} and to compare the behavior of Pd(I1) complexes which undergo ligand-exchange reactions $10⁵$ faster than those of $Pt(II)^{11b}$ and easily form aquo derivatives.¹⁰

Experimental Section

Materials. The nucleosides were purchased from Raylo Chemicals, Ltd., and were used without further purification. Potassium tetrachloropalladate(I1) and palladous chloride were from Fluka A.G.

Methods. The IR spectra were recorded with a Beckman Model 2050 spectrophotometer. The positions of the bands are given within ± 2 cm⁻¹. The ¹H NMR spectra were recorded with a Varian T60 high-resolution spectrometer. Me₄Si was used as an external reference in the spectra recorded in D₂O. Conductivity measurements were performed using an E365B conductoscope, Metrohm Ltd., Herisau, Switzerland. The melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected. The microanalyses were performed in the Laboratories of The National Hellenic Research Foundation (N.H.R.F.) in Athens.

Preparation of the Complexes. (1) cis-[Bis(inosine)dichloropalladium(II)], cis-[Pd(In~H)~Cl~]. Palladous chloride (0.3546 g, 2 mmol) was dissolved in 10 mL of 1 N HC1 by heating at 50 to 60 ^oC. Inosine (1.0728 g, 4 mmol) was dissolved in 20 mL of 1 N HCl. The two solutions were mixed and stirred for **2** h. The yellow

*To whom correspondence should be addressed at the Physical Chemistry & Spectroscopy Centre, The National Hellenic Research Foundation. Athens **501/1,** Greece.

precipitate that formed was filtered, washed with acetone and ether, and dried at 110 °C under vacuum (yield \sim 80%).

(2) cis-[Bis(inosinato)palladium(II)], cis-[Pd(In~)~]. cis- [Bis(inosine)dichloropalladium(II)] (0.7137 g, 1 mmol) was suspended and stirred in 50 mL of water. Immediately the compound was dissolved, and a yellow precipitate was formed. The stirring was continued for 2 h for completion of the reaction. It was then filtered, washed with water, ethanol, and ether, and dried at 110 °C under vacuum. The yield was quantitative.

(3) *trans*-[Bis(inosinato) palladium (II)], *trans*-[Pd(Ino)₂]. Potassium **tetrachloropalladate(I1)** (0.6524 g, 2 mmol) was dissolved in 20 mL of 0.5 N HCl by heating and the pH adjusted to \sim 6 with 0.5 N KOH. Inosine (1.0728 g, 4 mmol) was dissolved in 80 mL of water. The two solutions were mixed, and the pH of the mixture decreased from about 6 to about 2 with subsequent precipitation. The precipitate was filtered, washed with water, ethanol, and ether, and dried at 110 ^oC under vacuum. The yield was quantitative.

(4) *trans*-[Bis(inosine)dichloropalladium(II)], *trans*-[Pd(InoH)₂Cl₂]. **trans-[Bis(inosinato)palladium(II)]** (1.28 16 g, 2 mmol) was dissolved in 5 mL of 1 N HCl and filtered. Excess acetone/ether 1:l was then added to the filtrate. The complex precipitated quantitatively, was filtered, and was washed with small quantities of acetone and ether.

(5) [Tetrakis(inosine)paIladium(II)] Dichloride, [Pd(1n0H)~]Cl~. *cis-* or *trans-* **[Bis(inosine)dichloropalladium(II)]** (0.3569 g, 0.5 mmol) was mixed with 0.2682 g (1 mmol) of inosine in the solid state, and to this mixture was added 4 mL of D₂O. After stirring for 5 to 10 min at room temperature, the materials were completely dissolved. ¹H NMR spectra indicate formation of the complex in solution, which was then precipitated by adding excess acetone. The precipitate was filtered, washed with acetone and ether, and dried at 110 °C under vacuum. The yield was quantitative.

(6) cis-[Bis(inosine) bis(guanosine)palladium(II)] Dichloride, ~is-[Pd(InoH)~(GuoH)~]Cl~. cis-[Bis(inosine)dichloropalladium(II)] $(0.3569 \text{ g}, 0.5 \text{ mmol})$ was mixed with 0.2833 g (1 mmol) of guanosine in the solid state, and then 4 mL of D₂O was added. After stirring for about 10 min at 50 °C, complete dissolution was achieved. ¹H NMR spectra show the end of the reaction, and the complex was then precipitated with acetone, filtered, washed with acetone and ether, and dried at 110 °C under vacuum. The yield was quantitative. The same product was obtained starting with cis -[Pd(GuoH)₂Cl₂] and inosine.

(7) trans-[Bis(inosine)bis(guanosine)palladium(II)] Dichloride, trans-[Pd(InoH)₂(GuoH)₂]Cl₂. Using stoichiometric amounts of trans- **[bis(inosine)dichloropalladium(II)]** and guanosine, the product was isolated as in (5) or (6). The same product was obtained starting with trans-[Pd(GuoH)₂Cl₂] and inosine. The yield was quantitative.

(8) cis-[Bis(inosine)bis(cytidine)palladium(II)] Dichloride, *cis-* $[Pd(InoH)₂(Cyd)₂]Cl₂$. By mixing 0.3569 g (0.5 mmol) of *cis*-**[bis(inosine)dichloropalladium(II)]** and 0.2432 g (1 mmol) of cytidine and using the same procedure as in (7), cis -[Pd(InoH)₂(Cyd)₂]Cl₂ was isolated in quantitative yield.

(9) trans-[Bis(inosine)bis(cytidine)palladium(II)] Dichloride, $trans\text{-}\text{[Pd(InoH)$}_2\text{(Cyd)}_2\text{]Cl}_2$. This complex was obtained in quantitative yield as in (8), starting with **trans-[bis(inosine)dichloropalladium(II)].**

(10) cis-[Bis(inosine)bis(xanthosine)palladium(II)] Dichloride, cis -[Pd(InoH)₂(XaoH)₂]Cl₂. By using stoichiometric amounts of

0020-1669/78/1317-0915\$01.00/0 © 1978 American Chemical Society

cis- [**bis(inosine)dichloropalladium(II)]** and xanthosine and heating in a water bath for 15 min at 65 \degree C, the above compound was isolated in quantitative yield.

(1 1) trans-[Bis(inosine)bis(xanthosine)palladium(II)] Dichloride, *trans*-[Pd(InoH)₂(XaoH)₂]Cl₂. This product was isolated as in (10), starting with **tram-[bis(inosine)dichloropalladium(II)]** and xanthosine.

(12) cis-[Bis(guanosine) (diaquo)palladium(II)] Dichloride, *cis-* $[Pd(H₂O)₂(GuoH)₂]Cl₂. Potassium tetrachloropalladate(II) (0.6524)$ g, 2 mmol) was dissolved in 10 mL of water. Guanosine (1.1332 g, 4 mmol) was suspended in 20 mL of water. The pH of both solutions was brought to about 2.5 with 0.1 N HCI. The two solutions were then mixed and stirred until complete dissolution of the guanosine. The solution was then rotoevaporated to a small volume, and the compound precipitated with excess of equal volumes of acetone and ether. The dried precipitate was dissolved in 5 mL of DMF, filtered from the insoluble KC1, and then reprecipitated with excess of equal volumes of acetone and ether. The precipitate was filtered, washed with ether, and dried under high vacuum in the presence of $CaCl₂$ (yield \sim 80%).

(13) trans-[Bis(guanosine)dichloropalladium(II)], cis-[Pd- $(GuoH)_2Cl_2$]. Palladous chloride (0.3546 g, 2 mmol) was dissolved in 10 mL of 0.5 N HCl by heating to about 50 °C. Guanosine (1.1332) g, **4** mmol) was dissolved in 20 mL of 0.5 N HCI. The two solutions were mixed and stirred for 2 h. The yellow precipitate that formed was filtered, washed with acetone and ether, and dried at 110 "C under vacuum (yield \sim 80%). Note: cis-[Pd(GuoH)₂Cl₂] can also be prepared in quantitative yield by dissolution of cis -[Pd(H₂O)₂- $(GuoH)_2$]Cl₂ in 0.5 N HCl, where upon stirring for 2 h the compound precipitates (see eq 12).

(**14)** *trans-[* Bis (guanosinato) palladium (II)], *trans-[* Pd(**Guo) 2].** Guanosine (1.1332 g, 4 mmol) was suspended in 80 mL of water and mixed with 0.6524 g (2 mmol) of potassium tetrachloropalladate(II) dissolved in 20 mL of water. The mixture was stirred at room temperature for 2-3 h, during which time the yellow complex precipitated and the pH decreased. The precipitate was filtered, washed with water, ethanol, and ether, and dried at 110 °C under vacuum. The yield was quantitative.

(15) cis [Bis(guanosinato)palladium(II)], cis [Pd(Guo)₂]. This complex was prepared in quantitative yield by suspending cis-[Pd- $(GuoH)_2Cl_2$ in water and stirring at room temperature for 1 h. During the reaction, the pH decreased and the precipitate that formed was filtered, washed with small quantities of ethanol and ether, and dried at 110 °C under vacuum.

(16) trans-[Bis(guanosine)dichloropalladium(II)], trans-[Pd- $(GuoH)_2Cl_2$. This compound was prepared quantitatively by dissolving **trans-[bis(guanosinato)palladium(II)]** in the minimum amount of 1 N HCI, followed by precipitation with excess of equal volumes of acetone and ether.

(17) [Tetrakis(guanosine)paUadium(II)] Dichloride, [Pd(GuoH),fl> *cis-* or **trans-[Bis(guanosine)dichloropalladium(II)]** (0.3755 g, 0.5 mmol) was mixed with 0.2833 g (1 mmol) of guanosine in the solid state, and 4 mL of D_2O was added. The same procedure as in (6) was then followed to isolate the compound quantitatively.

(18) cis-[Bis(guanosine)bis(cytidine)palladium(II)] Dichloride, cis-[Pd(GuoH)₂(Cyd)₂]Cl₂. Using stoichiometric amounts of *cis-* $[Pd(GuoH)_2Cl_2]$ and cytidine, the complex was isolated quantitatively following the usual procedure.

(19) trans-[Bis(guanosine)bis(cytidine)palladium(**II)]** Dichloride, *trans*-[Pd(GuoH)₂(Cyd)₂]Cl₂. This complex was prepared as in (18), starting with trans- $[Pd(GuoH),Cl₂]$.

(20) cis-[Bis(guanosine)bis(xanthosine)palladium(II)] Dichloride, cis -[Pd(GuoH)₂(XaoH)₂]Cl₂. This complex was prepared as in (10) from cis -[Pd(GuoH)₂Cl₂] and xanthosine in stoichiometric amounts.

(21) trans-[Bis(guanosine) bis(xanthosine) palladium(II)] Dichloride, $trans\text{-}\text{[Pd(GuoH)$}_2\text{(XaoH)}_2\text{]Cl}_2$. Here the starting materials were *trans*-[Pd(GuoH)₂Cl₂] and xanthosine. The procedure was as in (10).

(22) cis-[Bis(guanosine)(guanosinato)palladium(II)] Chloride, mmol) was mixed with 0.2833 g (1 mmol) of guanosine, and 20 mL water was added. The mixture was heated until complete dissolution and then cooled in an ice bath. The unreacted guanosine precipitated and was filtered off. During the reaction, the pH decreased from an initial value of \sim 5.5 to the final value of \sim 2.5. The filtrate was concentrated to a small volume, and the *cis*-[Pd(GuoH)₂(Guo)] Cl was precipitated with excess acetone. The precipitate was then filtered, washed with acetone and ether, and dried at 110 °C under vacuum. cis-[Pd(GuoH)₂(Guo)]Cl. cis-[Pd(H₂O)₂(GuoH)₂]Cl₂ (0.3773 g, 0.5

FREQUENCY CM

Figure 1. IR spectra in the 1500-1800 cm⁻¹ region of (a) InoH, cisor trans-[Pd(Ino)₂], *cis-* or trans-[Pd(InoH)₂Cl₂] and (b) GuoH, *cis*or trans- $[Pd(Guo)_2]$, cis- or trans- $[Pd(GuoH),Cl_2]$.

(23) [Tris(guanosine)monochloropalladium(II)] Chloride, [Pd- $(GuoH)_3ClCl.$ cis -[Pd(GuoH)₂(Guo)]Cl (0.4989 g, 0.5 mmol) was dissolved in 5 mL of 0.5 N HCl and filtered. The $[Pd(GuoH)_3Cl]Cl$ was precipitated from the filtrate with excess of acetone. The precipitate was filtered, washed with acetone and ether, and dried at 110 °C under vacuum. The yield was quantitative.

(24) cis-[Bis(guanosine)(inosinato)palladium(II)] Chloride, *cis-* [Pd **(GuoH**) Z(**Ino)j€l.** *cis-* [Pd(H20)2(GUOH)~] Clz (0.3 *7* 7 3 g , 0.5 mmol) and 0.1341 g (0.5 mmol) of inosine were mixed, and 20 mL of water was added. The mixture was stirred at 50 $^{\circ}$ C for 1 h, and the pH decreased from \sim 5.5 to \sim 2.5. The cis-[Pd(GuoH)₂(Ino)]Cl was precipitated with excess acetone, filtered, washed with ether, and dried at 110 °C under vacuum. The yield was quantitative.

(25) [Bis(guanosine)(inosine)monochloropalladium(II)] Chloride, $[Pd(GuoH)₂(Ino)Cl]C1.$ This compound was prepared quantitatively from cis- $[Pd(GuoH)₂(Ino)]C1$ following the procedure in (23) by dissolving it in 0.5 N HCl.

(26) cis-[Bis(cytidine)dichloropalladium(II)], cis-[Pd(Cyd)₂Cl₂]. Potassium tetrachloropalladate(I1) (0.3262 **g,** 1 mmol) was dissolved in 10 mL of water. Cytidine (0.4864 g, 2 mmol) was dissolved in 20 mL of water. The two solutions were mixed and stirred overnight. The yellow precipitate that formed was filtered, washed with water, ethanol, and ether, and dried at 110 °C under vacuum (yield \sim 90%).

(27) [Tetrakis(cytidine)palladium(II)] Dichloride, [Pd(Cyd)₄]Cl₂. cis -[Pd(Cyd)₂Cl₂] (0.3319 g, 0.5 mmol) and 0.2432 g (1 mmol) of cytidine were suspended in 3 mL of D_2O and stirred at 50 °C until complete dissolution. The $[Pd(Cyd)_4]\bar{C}l_2$ product was first detected by 'H NMR in solution and was then precipitated with excess acetone, filtered, washed with ether, and dried at 110 °C under vacuum. The yield was quantitative.

Results

Inosine. Direct interaction of K_2PdCl_4 or H_2PdCl_4 with inosine at $pH \sim 5.5$ -6 and a 1:2 molar ratio resulted in the immediate quantitative precipitation of the trans-bis(inner complex) $Pd(Ino)$, with subsequent pH decrease, as in eq 1.

$$
K_2[PGCl_4] + 2InoH \rightarrow trans-[Pd(Ino)_2] + 2HCl + 2KCl
$$
 (1)

Analytical data are consistent with the product formula (see Table I).

The \sim 1700 cm⁻¹ IR ν (C=O) stretching band of the free inosine shifted to \sim 1625 cm⁻¹ for the [Pd(Ino)₂] complex, indicating Pd-0 interaction (see Figure 1). Similar behavior has always been observed in the IR spectra of metal complexes of inosine and guanosine with the formation of $M-O$ bonds.^{7c} The $[Pd(Ino)_2]$ complex was not soluble in most organic solvents, but it reacted easily with 1 N HC1 to form the $trans$ -[Pd(InoH)₂Cl₂] complex (eq 2). Reaction 2 was re-

trans-[Pd(Ino)₂] + 2HCl
$$
\frac{1 \text{ N HCl}}{H_2O}
$$
 trans-[Pd(InoH)₂Cl₂] (2)

 a_{D} = decomposition.

versible in water, producing the initial $[{\rm Pd}({\rm Ino})_2]$ immediately.

In the IR spectrum of *trans*- $[Pd(InoH),Cl₂]$, the \sim 1700-cm⁻¹ band of free C= \sim O stretching reappears together with the band at \sim 330 cm⁻¹, attributed to the Pd–Cl stretching vibration (see Figure 1). **A** Kurnakoff test showed trans geometry for the complex. This suggests a monomer character for the initial $[{\rm Pd}({\rm Ino})_2]$ complex with N_7O_6 chelation.

The N₇ coordination in trans- $[Pd(InoH)_2Cl_2]$ can be followed from the NMR spectrum (see Table I1 and Figure **2).** The H₈ proton near the binding site (N_7) is shifted downfield and is shown at 9.03 ppm, while the H_2 proton remains unshifted. The above shift of H_8 is shown in the NMR spectrum of trans- $[Pd(InoH)₂Cl₂]$ in the presence of excess thiourea (Kurnakoff's test) because the NMR spectrum was taken after mixing the trans- $[Pd(InoH),Cl₂]$ and thiourea in the solid state and adding D_2O . We observe the spectrum of the *trans*- $[Pd(InoH)₂Tu₂]Cl₂ complex.$

 cis -[Pd(InoH)₂Cl₂] could only be prepared by carrying out the reaction in 0.5-1 N HC1, where the trans influence of InoH is comparable to that of pyridine and produces the cis analogue^{7c} (eq 3). The cis- $[Pd(InoH)_2Cl_2]$ was precipitated

$$
{}_{2}[PdCl_{4}] + 2InoH \xrightarrow{0.5-1 \text{ N HCl}} cis-[Pd(InoH).Cl_{4}] + 2HCl
$$
 (3)

quantitatively. In the IR spectrum of this complex, the \sim 1700-cm⁻¹ C=O stretching was again observed together with the \sim 330-cm⁻¹ Pd-Cl stretching, indicating no Pd-O interaction^{7c} (see Figure 1). The NMR spectrum of this complex could only be taken in strongly acidic solutions (see Table II and Figure 2) and indicates only Pd-N₇ interaction. In water the complex was unstable, decomposing according to reaction 4. The C=O stretching in this complex shifted Table II and Figure 2) and indicates only Pd-
In water the complex was unstable, decompo
to reaction 4. The C=O stretching in this c
cis-[Pd(InoH)₂Cl₂] $\frac{H_2O}{1 \text{ N HCl}}$ cis-[Pd(Ino)₂] + 2HCl

$$
cis\left[\text{Pd}(\text{InoH})_2\text{Cl}_2\right] \xrightarrow{\text{H}_2\text{O}} cis\left[\text{Pd}(\text{Ino})_2\right] + 2\text{HCl}
$$
 (4)

HO

Figure 2. NMR spectra in the aromatic proton region of (a) InoH in D₂O, (b) trans- $[Pd(InOH)_2Cl_2]$ in the presence of excess thiourea, in D_2O , (c) cis-[Pd(InoH)₂Cl₂] in 3 N DCI, (d) GuoH in Me₂SO-d₆, (e) trans-[Pd(GuoH)₂Cl₂] in the presence of excess thiourea, in D₂O, and (f) cis-[Pd(GuoH)₂Cl₂] in 3 N HCl.

a Doublet.

from 1700 cm^{-1} to 1625 cm^{-1} , indicating carbonyl involvment in bonding. The reaction was reversible in 1 N HC1. The cis geometry of the above complex was again shown by a Kurnakoff test. The complex was mixed with excess thiourea in the solid state and the mixture was dissolved in D_2O . The NMR spectrum of the mixture showed the presence of free inosine.

Both cis -[Pd(InoH)₂Cl₂] and trans-[Pd(InoH)₂Cl₂] reacted readily with other bases like guanosine, xanthosine, cytidine, and inosine to form mixed complexes of the type cis- and *trans*- $[Pd(InoH)₂(NuclH)₂]Cl₂$. These reactions were carried out by mixing stoichiometric amounts of the initial cis and trans complexes and the bases in the solid state. The mixture was dissolved in D_2O to obtain the complexes and observe their NMR spectra. It is readily seen from Table I1 and Figures *2* and 3 that all the bases are bonded to Pd(I1) through their N_7 atom because the H_8 protons are shifted downfield by 0.6-1 ppm compared to the free bases.⁵⁻⁷ The shifts are higher in strongly acidic solutions.

 cis - [Pd(Cyd)₂Cl₂] was prepared by direct interaction of K2PdC14 and cytidine in water (eq *5).* Two more cytidine

$$
K_2[PdCl_4] + 2Cyd \rightarrow cis\text{-}[Pd(Cyd)_2Cl_2] + 2KC1
$$
 (5)

molecules could be added to cis -[Pd(Cyd)₂Cl₂] as in eq 6.

$$
cis\text{-}\left[\text{Pd(Cyd)}_{2}\text{Cl}_{2}\right] + 2\text{Cyd} \rightarrow \left[\text{Pd(Cyd)}_{4}\right]\text{Cl}_{2} \tag{6}
$$

Coordination takes place here through the N_3 atom (see Table III and Figure 3). The same has also been shown from ^{13}C NMR studies of cis -[Pd(en)Cl₂] and cytidine interactions¹⁰ and in the cis- $[Pt(NH_3)_2Cl_2]$ -cytidine interactions.^{6b} The overall reactions of inosine with Pd(I1) can be summarized as shown in Scheme I.

Guanosine. Unlike inosine, guanosine is not soluble in water at $pH \sim 6$. A suspension of guanosine in water was mixed

Figure 3. NMR spectra in the aromatic proton region of (a) $[Pd(InoH)_4]Cl_2$ in D_2O , (b) $[Pd(GuoH)_4]Cl_2$ in D_2O , (c) $trans-[Pd(InoH)_2]Cl_2$ in D_2O , (d) cis -[Pd(GuoH)₂(InoH)Cl]Cl in Me₂SO-d₆, (e) cis -[Pd(GuoH)₂(Ino)]Cl in Me₂SO-d₆, and (f) [Pd(Cyd)₄]Cl₂ in D₂O.

Table 111. NMR Chemical Shifts (ppm) of Palladium(I1)-Guanosine Complexes

	Guanosine			Inosine		Cytidine			
Compound	H ₈	H'_{1}	H _a	H ₂	H_1'	H_s	Н.	H_1'	Solvent
GuoH	7.80	5.74 ^a							$Me2SO-d6$
cis -[Pd(H ₂ O) ₂ (GuoH) ₂]Cl ₂	8.43	5.68 5.73^{a} 5.67							D_2O
cis - Pd(GuoH), Cl ₂]	9.17	6.07 ^a							3 N DCI
trans-[Pd(GuoH) ₂ Tu ₂]Cl ₂	9.10	6.00 6.03 ^a 5.97							D, O
cis -[Pd(GuoH) ₂ (Guo)]Cl	8.49	5.77 ^a							Me ₂ SO- d_{κ}
[Pd(GuoH),Cl]Cl	8.50	5.70 5.79 ^a 5.72							$Me2SO-d6$
[Pd(GuoH) ₄]Cl ₂	8.40	5.87^{a}							D_2O
cis -[Pd(GuoH) ₂ (Ino)]Cl ·	7.95	5.80 5.65 ^a 5.72	8.30	7.95	5.80^{a} 5.88				$Me2SO-d6$
cis-[Pd(GuoH),(InoH)Cl]Cl	8.70	5.70 ^a	8.30	7.95	5.78 ^a				Me ₂ SO ₄
$[$ Pd(Cyd) ₄]Cl ₂		5.75			5.76	8.15^{a} 8.23	6.40	6.24^{a} 6.17	D_2O

^{*a*} Doublet.

with H_2PdCl_4 or K_2PdCl_4 in a metal/ligand ratio of 1:2 and produced a yellow precipitate corresponding to the formula $trans$ -[Pd(Guo)₂] (eq 7) (see Table I).

 $K_2[PdCl_a] + 2GuoH \rightarrow trans-[Pd(Guo)_2] + 2KC1 + 2HC1$ (7)

The ν (C=O) band in the IR spectrum of free guanosine at \sim 1700 cm⁻¹ is shifted to \sim 1625 cm⁻¹, while the Pd-Cl stretching band was absent,^{7c} suggesting the $N₇O₆$ chelate structure. trans- $[Pd(Guo)_2]$, which is insoluble in the usual organic solvents, is dissolved in 1 N HC1, producing trans- $[Pd(GuoH)_2Cl_2]$ (eq 8) similar to inosine; the reaction is

trans
$$
trans\text{-}\left[\text{Pd(Guo)}_{2}\right] \frac{1 \text{ N } \text{HCl}}{\text{H}_{2}\text{O}} trans\text{-}\left[\text{Pd(GuoH)}_{2}\text{Cl}_{2}\right]
$$
(8)

reversible in water (see Figure 1). The trans- $[Pd(GuoH)_2Cl_2]$ shows both free ν (C=O) at \sim 1700 cm⁻¹ and ν (Pd-CI) at \sim 330 cm⁻¹. The trans geometry of the above compound is again suggested by the Kurnakoff test as in the case of inosine. The NMR spectra (Table I11 and Figure **2)** also indicate the Pd-N₇ interaction of guanosine in the trans- $[Pd(GuoH)_2Cl_2]$ complex, implying N_7O_6 chelation in the initial trans-[Pd- $(Guo)_2$].

cis- $[Pd(GuoH)_2Cl_2]$ was prepared from H_2PdCl_4 and guanosine in acidic solutions $(0.5-1 \text{ N } HCl)$ as the analogous inosine complex *(eq* 9). The cis geometry was again suggested

 $H_2[PdCl_4] + 2Gu \circ H \xrightarrow{0.5-1 \text{ N HCl}} cis-[Pd(Gu \circ H)_2Cl_2] + 2HC1$ (9)

here by a Kurnakoff test. The corresponding cis-[Pd(Guo)₂] complex was prepared easily from cis -[Pd(GuoH)₂Cl₂] (eq 10).

$$
cls\text{-}[Pd(GuoH)_2Cl_2] \xrightarrow{\text{H}_2O} \text{cis-}[Pd(Guo)_2] + 2HCl
$$
 (10)

Scheme I

In the cis -[Pd(Guo)₂] complex the chelate is formed between N_7O_6 as in the other cases. During the precipitation of the *cis-* and *trans*- $[Pd(Nucl)_2]$ complexes, where Nucl = inosinate or guanosinate, the pH of the supernatant liquid decreased from pH \sim 6 to \sim 2, indicating 2HCl liberation in all cases, which was also shown from conductivity measurements.

If the reaction of H_2PdCl_4 and guanosine was carried out at an initial pH \sim 2.5, no precipitate was obtained, but the color of the solution turned to yellow, producing the diaquo complex (eq 11). Analytical data and conductivity mea-

$$
H_2[PdCl_4] + 2GuOH \frac{H_2O}{pH \sim 2.5} cis-[Pd(H_2O)_2(GuoH)_2]Cl_2 +
$$

2HCl (11)

surements confirmed the formula of the product in eq 11 (see Table I). The two water molecules of the aquated complex could easily be removed in acid solutions $(0.5-1 \text{ N } HCl)$ in a reversible manner, producing cis- $[Pd(GuoH)_2Cl_2]$ (eq 12).

$$
cis\text{-}\left[\text{Pd}\left(\text{H}_2\text{O}\right)_2\left(\text{Guol}\right)_2\right]\text{Cl}_2\frac{0.5 \text{ N HCl}}{\frac{\text{pH}\sim 2.5}{\text{pH}\sim 2.5}}\text{cis}\left[\text{Pd}\left(\text{Guol}\right)_2\text{Cl}_2\right] \tag{12}
$$

cis-[Pd(H₂O)₂(GuoH)₂]Cl₂ is a 1:2 electrolyte in water (Λ_M) $= 240 \Omega^{-1}$ cm²) in the beginning, attaining a value of 350 Ω^{-1} cm2 after 24 h, due to the ionization of the imino protons of guanosine and formation of $N₇O₆$ chelates. *cis*- $[Pd(Guo)₂]$ could also be produced from cis- $[Pd(H_2O)_2(GuoH)_2]Cl_2$ in water at pH \sim 6 in a reversible manner (eq 13).

$$
cis
$$
-[Pd(H₂O)₂(GuoH)₂] $Cl_2 \frac{pH \sim 6}{pH \sim 2.5} cis$ -[Pd(Guo)₂] + 2HCl +
2H₂O (13)

In water cis-[Pd(GuoH)₂Cl₂] was very unstable, reacting according to eq 10 and giving a molar conductance of \sim 400 Ω^{-1} cm², in agreement with the liberation of two HCl molecules. The same was true for the trans analogue and the inosine complexes. In DMF solutions *cis*-[Pd(H₂O)₂- $(GuoH)_2|Cl_2$ was a 1:2 electrolyte, while cis- $[Pd(GuoH)_2Cl_2]$ was not conducting. The presence of the two water molecules in cis- $[Pd(H_2O)_2(GuoH)_2]Cl_2$ was also confirmed from the reaction of the complex with both inosine and guanosine in water to form 1:l complexes (eq 14). The pH of the mixture

$$
cis
$$
-[Pd(H₂O)₂(GuoH)₂]Cl₂ $\xrightarrow{\text{+NucIH}}$ cis-[Pd(GuoH)₂(NuCl)]Cl +
HCl + 2H₂O (14)

 $(NuCl = Ino, Guo)$

decreases during the reaction from an initial value of ~ 5.5 to \sim 2.7, indicating imino proton liberation for both bases and formation of N_7O_6 chelates. The latter two complexes are 1:1 electrolytes in DMF, and their analytical results confirm the assigned formulas (see Table I). In the NMR spectrum of cis-[Pd(GuoH)₂(Guo)] Cl, there is only one resonance at 8.49

ppm due to H_8 protons of both chelated and nonchelated guanosine.

The NMR spectrum of cis -[Pd(GuoH)₂(Ino)]Cl in $Me₂SO-d₆$ shows two resonances in the aromatic proton region at 7.95 and 8.30 ppm (see Figure 3). The first is due to both $H₂$ of chelated inosine and $H₈$ of guanosine, while the second is due to the H_8 of inosine. The low value of the guanosine $H₈$ indicates that the guanosine molecules in this complex have been displaced by the solvent $Me₂SO-d₆$. The NMR spectrum of *cis*-[Pd(GuoH)₂(InoH)Cl]Cl in Me₂SO- d_6 shows three resonances in this region at 8.70, 8.30, and 7.95 ppm, assigned to the H_8 of guanosine, H_8 of inosine, and H_2 of inosine, respectively (see Figure 3). The H_8 of guanosine is twice as intense as that of H_8 and H_2 protons of inosine, in conformity with the above formula. These assignments were based on the NMR spectra of the complexes with inosine deuterated at the 8 position, where the resonances at 8.30 ppm in both spectra disappeared. The compounds $[Pd(GuoH)_3Cl]Cl$ and $[Pd (GuoH)₂(InoH)Cl]Cl$ were prepared by dissolving [Pd- $(GuoH)_2(Guo)$]Cl and $[Pd(GuoH)_2(Ino)]$ Cl in 0.5 N HCl, respectively. In the first case the reaction is reversible, while in the second a mixture of complexes such as [Pd(GuoH)- $(InoH)(Guo)$]Cl and $[Pd(GuoH),(Ino)]$ Cl could be obtained by dissolving $[Pd(GuoH),(InoH)Cl]Cl$ in water (eq 15 and 16). $(GuOH)_2(Guo)$]Cl and [Pd(GuoH)₂(Ino)]Cl in 0.5 N HCl,
respectively. In the first case the reaction is reversible, while
in the second a mixture of complexes such as [Pd(GuoH)-
(InoH)(Guo)]Cl and [Pd(GuoH)₂(Ino)]Cl could

$$
[Pd(GuoH)_2(Guo)]Cl \xleftarrow{\text{0.5 N HCl}} [Pd(GuoH)_3Cl]Cl
$$
 (15)

$$
[Pd(GuoH)_2(Ino)]Cl \xrightarrow{0.5 \text{ N HCl}} [Pd(GuoH)_2(InoH)Cl]Cl
$$
 (16)

Finally, both *cis-* and *trans-* $[Pd(GuoH)_2Cl_2]$ complexes reacted with two extra molecules of other nucleosides as in the inosine complexes according to the general reaction: $[Pd(GuoH)_2(Ino)]Cl \xrightarrow{0.5 \text{ N HCl}} [Pd(GuoH)_2(Iio)]$
 Finally, both cis- and trans-[$Pd(GuoH)_2(Iio)$
 cis- and trans-[$Pd(GuoH)_2Cl_2$]
 cis- and trans-[$Pd(GuoH)_2Cl_2$]
 cis- and trans-[$Pd(GuoH)_2(NucH)_2|Cl_2$

NuclH *cis-* and *trans-[* Pd(GuoH),(NuclH),]Cl, (17)

The overall reactions of guanosine may be represented as in Scheme IT.

Discussion

It is known that Pd(I1) undergoes faster ligand exchange reactions than $Pt(II).¹¹$ In this respect, it is worth comparing the reactions of both metals with the ligands inosine and guanosine. Both ligands have a ketone oxygen atom at the 6 position which can be enolized, making possible the formation of five-membered chelate rings with the metal through $N₇$. The possibility of formation of such a chelate has been proposed¹⁴ to explain the mechanism of action of cis-[Pt- $(NH_3)_2Cl_2$] as an antitumor agent reacting with DNA. Maquet and Theophanides¹⁴ suggested a bidentate interaction of cis -[Pt(NH₃)₂Cl₂] with guanosine in DNA in vitro on the basis of titration, chlorine determination,^{14b} and photoelectron spectroscopy.^{14c} According to these authors,¹⁴ the first attack occurs at the N₇ site of guanosine by *cis*-[Pt(NH₃)₂Cl₂], followed by ring closure and formation of a five-membered chelate ring with a subsequent pH decrease due to the imino proton ionization. This could explain the antitumor activity of *cis*-[Pt(NH₃)₂Cl₂], causing a permanent damage in the DNA by preventing the ability of O_6 to form hydrogen bonds with the opposite cytidine base.^{14c,15}

The ability of O_6 to coordinate with metals through a chelate involving N_7 has been a matter of controversy in recent years. Sletten¹⁶ excluded N₇O₆ chelation with Cu(II) on the basis of a crystal-structure determination of bis(9-methyl-6-oxopurine)copper(II) due to steric effects. Neumann et al.¹⁷ agreed with this explanation. Kelman et al.¹⁸ supported the idea of cis- $[Pt(NH_3)_2Cl_2]$ binding to two adjacent guanine bases in DNA. Mansy et al.¹⁹ excluded a metal-oxygen interaction of guanosine in DNA on the basis of Raman

trans-[Pd(GuoH),(NuclH)₂]Cl₂

spectra. On the other hand, there is enough evidence from other investigations that an N_7O_6 chelation may actually exist under certain conditions. Ogawa and Sakaguchi²⁰ found O_6 -Hg interaction in Hg-IMP complexes. Tu et al.²¹ proposed N_7O_6 chelate complexes in Ag(I) and Cu(II) complexes of inosine and guanosine. Berger and Eichhorn²² found N_7O_6 chelation in Cu(I1)-IMP interactions. Recently, Dehand and Jordanov²³ reported a guanosine chelate of $Pt(II)$ without ionization of the imino proton. Five-membered chelation is known to take place in the 6-mercaptopurine and *6* mercaptopurine ribosides with Pt(II) and $Pd(II)$.^{7,12} Heitner and Lippard,¹³ in the crystal structure of (dimethylacet**amide)bis(6-mercapto-9-benzylpurine)palladium(II),** stated that chelation of the metal through N_7 and the substituent at the *6* position of the purine base may exist when the ligand undergoes the proper distortion to accommodate the metal ion.

Our results⁷ show that Pt(II) can react with O_6 , N₇, and $N₁$ sites of guanosine and inosine with possible chelate formation at pH values higher than the pK_a values of the free bases, although the reactions are slow. Pt(I1) reacts quantitatively in aqueous solutions with thioinosine and thioguanosine with chelate formation,^{7a} this is due to the strong tendency of sulfur to bind with Pt(II). cis- $[Pt(InoH)_2Cl_2]^{7c}$ could only be isolated pure in the presence of **2** M NaCl in the reaction mixture of K_2PtCl_4 and InoH, preventing the removal of HCl.²⁴ The tendency of the N_1 proton to ionize increases on platinum coordination at N₇ by lowering the p K_a value of the proton, and this facilitates the ring

The results with Pd(I1) further substantiate the formation of five-membered chelate complexes of inosine and guanosine. Both bases react quantitatively with Pd(I1) to form the bis- (inner complexes) $[Pd(Nucl)_2]$. Palladous chloride has been used as a reagent for the isolation and estimation of purine derivatives by Gulland and Macrae,²⁵ and it was found that it gave almost quantitative precipitation of the purines tested. These reactions are comparable to the reactions of Pt(I1) with thiopurine bases.^{7a,12} In aqueous solution the obtained [Pd- $(Nucl)_2$] products were of trans geometry, as were the analogous 8-hydroxyquinoline metal complexes.26 The cis complexes were obtained in **0.5-1** N HCl solutions as cis- $[Pd(NuclH)₂Cl₂]$, and the bases were immediately deprotonated in water, yielding cis- $[Pt(Nucl)_2]$. In this way both cis and trans isomers have been isolated (see Figure **4).** The reaction of the bases with palladium definitely indicates that N_7O_6 ring closure is much easier in this case than with platinum. These reactions also show that the trans effect of

Figure 4. Proposed structures of *cis-* and *trans-* $[Pd(NuclH)₂Cl₂],$ where NuclH = nucleoside (inosine for $R = H$ and guanosine for R $= NH₂$), are shown.

nucleosides is comparable to that of pyridine^{7b,c} and smaller than that of the halogens (nucleoside $\lt C\Gamma$, Br⁻) and that the Kurnakoff test is operative in this case.

cis- and trans- $[Pd(NuclH)_2Cl_2]$ reacted with other nucleosides to yield complexes of the cis- and trans-[Pd- $(NuclH)_4|Cl_2$ type. These reactions were always carried out by mixing stoichiometric amounts of the initial complexes and bases in the solid state. The mixture was dissolved in D_2O to obtain the complexes and observe their NMR spectra. These experiments also indicate that the initial compounds, although unstable in water and tending to ionize their imino protons and form chelates, are stabilized in the presence of four bases or thiourea. The diaquo complex *cis*-[Pd- $(H_2O)_2(GuoH)_2]Cl_2$ was also isolated in these reactions since the Cl⁻ substitution by water is easier in $Pd(II)$ complexes than in $Pt(II).¹⁰$

C onclusion

The strong reactivity of Pd(I1) toward inosine and guanosine and the tendency of formation of $N₇O₆$ chelates by ionization of the imino protons of the bases have been found to be operative in this study. The differences in reactivity of Pd(I1) and Pt(I1) toward inosine and guanosine are mainly due to their difference in ligand-exchange reactions. Thus, Pt(II), being less reactive than Pd(II), reacts slower with the bases. Both metals in aqueous solution first react with the $N₇$ site of the base and subsequently chelate with *06.* Coordination of Pt at N_7 does not introduce significant geometrical perturbations in the base as was shown²⁷ in the $[PLCl₃(9-Me-$ AdeH)] complex. In addition, the N_7O_6 distance is suitable for closure of the ring with the metal.

Acknowledgment. We wish to thank Dr. Mantzos of The National Hellenic Research Foundation for the microanalyses and the National Research Council of Canada and the Ministère de l'Education of Quebec for financial assistance.

Registry No. cis-[Pd(InoH)₂Cl₂], 64715-03-3; cis-[Pd(Ino)₂], 64715-04-4; trans- $[Pd(Ino)_2]$, 64753-38-4; trans- $[Pd(InoH)_2Cl_2]$, 64753-39-5; $[Pd(InoH)_4]Cl_2$, 64715-05-5; *cis*- $[Pd(InoH)_2(GuoH)_2]Cl_2$, 64715-06-6; trans-[Pd(InoH)₂(GuoH)₂]Cl₂, 64753-40-8; cis-[Pd- $(InoH)₂(Cyd)₂]Cl₂, 64715-07-7; *trans-*[Pd(InoH)₂(Cyd)₂]Cl₂,$ 64753-41 -9; *cis-* [Pd(InoH),(XaoH),] Cl,, 647 15-08-8; *trans-* [Pd- $(InoH)₂(XaoH)₂]Cl₂, 64753-42-0; cis-[Pd(H₂O)₂(GuoH)₂]Cl₂,$ 63251-58-1; cis-[Pd(GuoH)₂Cl₂], 62800-79-7; trans-[Pd(GuoH)₂Cl₂], 64753-34-0; trans- $[Pd(\bar{G}uo)_2]$, 64753-35-1; cis- $[Pd(Guo)_2]$, 62850-22-0; [Pd(GuoH),] Cl,, 64727-96-4; *cis-* [Pd(GuoH),(Cyd),] Cl,, 64714-96-1; *trans*-[Pd(GuoH)₂(Cyd)₂]Cl₂, 64753-36-2; cis-[Pd- $(GuoH)_2(XaoH)_2|Cl_2$, 64714-97-2; *trans*-[Pd(GuoH)₂(XaoH)₂]Cl₂, 64753-37-3; *cis-* [P(GuoH),(Guo)]CI, 62800-80-0; [Pd(GuoH),Cl]Cl, 62800-81-1; *cis-* $[Pd(GuoH)_2(Ino)]Cl$, 64714-98-3; $[Pd(GuoH)_2$ -(InoH)CI]Cl, 64714-99-4; cis-[Pd(Cyd)₂Cl₂], 64715-00-0; [Pd-(C~d)~lCl~, 64715-01-1; **trans-[Pd(InoH),Tu2]C12,** 64715-02-2; $trans\text{-} [Pd(GuoH)_2Tu_2]Cl_2$, 64714-95-0; $K_2[Pd\bar{Cl}_4]$, 10025-98-6.

References and Notes

- A. T. Tu and M. J. Heller, Met. Ions Biol. Syst., 1, 1 (1974).
- (2) R. Phillips, Chem. Rev., 66, 501 (1966).
- (3) R. M. Izatt, J. J. Christensen, and J. H. Rytting, Chem. Rev., 71, 439 $(1971).$
- (4) B. Rosenberg, *Platinum Mzt. Rev.,* 15, 42 (1971).
- *(5)* N. Hadjiliadis, P. Kourounakis, and T. Theophanides, *Inorg. Chim. Acta,*
- **7,** 226 (1973). (6) (a) P. C. Kong and T. Theophanides, *Inorg. Chem.,* 13, 1167 (1974); (b) *ibid.,* 13, 1981 (1974).
- (7) (a) N. Hadjiliadis and T. Theophanides, *Inorg. Chim. Acta,* 15, 167 (1975); (b) *ibid.,* 16, 67 (1976); (c) *ibid.,* 16,77 (1976), and references therein.
- (8) B. Rosenberg, *Cancer Chemother. Rep., Part 1,* 59, 589 (1975).
- (9) S. Kirschner, A. Maurer, and C. Dragulescu, paper presented at the Third International Symposium on Platinum Coordination Complexes in Cancer Chemotherapy, Oct 18-20, 1976, Dallas, Tex.; *J. Clin. Hematol. Oncol.,* **7.** 190 (1977).
- D. J. Nelson, P. L. Yeagle, T. L. Miller, and R. B. Martin, *Bioinorg*. *Chem.. 5.* 353 (1976).
- (1 1) (a) M.C.'Lim ind R.'B. Martin, *J. Inorg. Nuel. Chem.,* 38, 1915 (1976); (b) *ibid.,* 38, 191 1 (1976).
- (12) (a) A. A. Grinberg, V. S. Varshavskii, M. **1.** Gel'fman, N. V. Kiseleva, and D. B. Smolenskaya, *Russ. J. Inorg. Chem. (Engl. Trans.),* 13,422 (1968); (b) M. I. Gel'fman and N. **A.** Kustova, ibid., 14, 10 (1969).
- (13) H. I. Heitner and S. J. Lippard, *Inorg. Chem.*, 13, 815 (1974).
(14) (a) J. P. Maquet and T. Theophanides, *Biopolymers*, 14, 781 (1975);
(b) J. P. Maquet and T. Theophanides, *Bioinorg. Chem.*, 5, 59 (1975); (c) M. M. Millard, J. P. Maquet, and T. Theophanides, *Biochim.* Biophys.
- *Acta*, **402**, 166 (1975).
(15) B. Rosenberg, paper presented at the Third International Symposium (15) B. Rosenberg, paper presented at the Third International Symposium on Platinum Coordination Complexes in Cancer Chemotherapy, Oct 18-20, 1976, Dallas, Tex.; *J. Clin. Hematol. Oncol.,* **7,** 817 (1977).
- (16) (a) E. Sletten, *J. Chem.* Soc., *Chem. Commun.,* 558 (1971); (b) E. Sletten, *Acta Crystallogr., Sect. B,* 30, 1961 (1974).
- (17) C. **F.** Neumann, B. Prijs, and H. Sigel, *Eur. J. Biochem.,* 41, 209 (1974).
- (18) **A.** D. Kelman, H. J. Peresie, and P. J. Stone, paper presented at the Third International Symposium on Platinum Coordination Complexes in Cancer Chemotherapy, Oct 18-20, 1976, Dallas, Tex.; *J. Clin. Hematol. Oncol., 7, 440 (1977). Oncol., 7, 440 (1977). G. Y. H. Chu, and R. S. Tobias, paper presented at the Third (19)* S. Mansy, G. Y. H. Chu, and R. S. Tobias, paper presented at the Third
- International Symposium on Platinum Coordination Complexes in Cancer Chemotherapy, Oct 18-20, 1976, Dallas, Tex.
- (20) M. Ogawa and T. Sakaguchi, *Chem. Pharm. Bull.,* 19, 1650 (1971). (21) (a) A. T. Tu and J. A. Reinosa, Biochemisfry, 5, 3375 (1966); (b) A. T. Tu and C. G. Friedrich, *ibid.,* **7,** 4367 (1968).
-
- (22) **K. A.** Berger and G. L. Eichhorn, *J. Am. Chem.* Soc., 93,7062 (1971).
- (23) J. Dehand and J. Jordanov, J. Chem. Soc., Chem. Commun., 598 (1976).

(24) cis-[Pt(InoH)₂Cl₂] in water without NaCl was undergoing the following

reaction:⁷e cis-[Pt(InoH)₂Cl₂] \rightarrow cis-[Pt(Ino)(InoH)Cl] + was indicated from (a) HCl liberation (pH decrease), (b) the increase of the conductivity of the solution, due to HCl liberation, and (c) the
- isolation of the complex [Pt(Ino)(InoH)CI]. (25) J. **M.** Gulland and T. F. Macrae, *J. Chem.* Soc., 2331 (1932).
- (26) (a) F. P. Dwyer and D. P. Mellor, "Chelating Agents and Metal Chelates", Academic Press, New York and London, 1964; (b) *G.* J. Palenik, *Acta Crystallogr.,* **17,** 687 (1964).
- (27) (a) **A.** .Terzis, N. Hadjiliadis, R. Rivest, and T. Theophanides, *Inorg. Chim. Acta,* 12, L5 (1975); (b) **A.** Terzis, *Inorg. Chem.,* **15,** 793 (1976).

Contribution No. 3079 from the Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Reactions of $MoO(S_2CNR_1R_2)$ **with Azide**

E. A. MAATTA and R. **A.** D. WENTWORTH*

Received May *2, 1977*

When an alkylammonium salt of N_3^- is partitioned between water and CHCl₃ containing MoO(S₂CNEt₂)₂, the slow formation of N₂, NH₃, and MoO₂(S₂CNEt₂)₂ occurs. Significant enhancement of the rate of evolution of N₂ occurs when the aqueous layer is acidified and the reaction no longer requires the alkylammonium cation. There are no indications that significant quantities of a protonated Mo(1V) complex occur under the experimental conditions. The results are interpreted in terms of the reaction between HN_3 and $MoOS_2CNEt_2$) with the formation of a nitrene and N_2 . Subsequent hydrolysis of the nitrene produces NH_4^+ and the Mo(VI) complex. Variation of the organic substituents of the dithiocarbamate ligand produces changes in $\nu(C^{-1}N)$ and $\nu(MoO)$ and decreases in the rate of evolution of N_2 as the complexity of these substituents is increased. An explanation in terms of electronic effects rather than steric hindrance is offered. The decrease in the rate of the reaction of $Mo₂O₃(S₂CNE₁)₄$ when compared to that of $MoO(S₂CNE₁)₂$ is rationalized in terms of the disproportionation of the dinuclear complex prior to the reaction with $HN₃$. The possible biological significance of these reactions as they pertain to the functioning of the nitrogenases is discussed.

Introduction

The dialkyldithiocarbamate complexes of oxomolydenum(IV), $MoOS_2CNR_1R_2)_2$, and particularly the derivative with $R_1 = R_2 = C_2H_5$ (Et), have received considerable attention because they are possible models for molybdoenzymes.¹⁻⁵ While their reactions with certain activated

molecules appear to be reasonably fast in certain instances,² reactions with real biological substrates tend to be very slow or even nonexistent under the experimental conditions which have been described. Neither N_2 , N_3 ⁻, nor N_2O ,^{1,5} all of which are substrates for nitrogenases,⁶ bind to $MoOS_2CNEt_2$ or react with it in anhydrous CHCl₃. The possibility that this